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Abstract. The duality relation for multispin correlation functions of the Potts model on a 
plane graph is derived using the formulation of a percolation average. It is shown that in 
simple cases the correlation functions are related to those of the dual graph. But more 
generally the correlation functions are expressible as linear combinations of ratios of certain 
percolation averages, the dual partitioned equivalent transmissivities, and dual correlation 
functions. An overall multiplication factor arises in these considerations, and we elucidate 
the graph-theoretic meaning of this function. 

1. Introduction 

Duality constructions and relations have played an important role in field theory and 
statistical mechanics (for a review of duality see Savit [l]). In the usual formulation 
of duality for statistical systems, one studies how the partition function of a spin system 
on a lattice is related to that of the dual lattice. In such considerations all lattice sites 
enter the picture on an equal footing, and it is therefore natural to use unrooted graphs, 
i.e., graphs which do not have specially distinguished vertices, for its interpretation 
(for definitions of graph-theoretical terms see Essam and Fisher [2]). In considerations 
of quantities such as correlation functions, the pair connectedness, equivalent trans- 
missivities [3,4], and the conductance of resistor networks [5], special lattice sites 
appear. In the interpretation of these cases, it is necessary to use rooted graphs, i.e., 
graphs possessing specially distinguished vertices. In this way, m-rooted graphs, or 
graphs with m roots, have appeared in real-space renormalisation group considerations 
for spin systems on regular [3,6-121 fractal, and hierarchical lattices [ 13-16]. 

Construction of the geometric dual for unrooted and one-rooted (root residing in 
the infinite face) graphs is well established [2]. For two-rooted graphs, Tsallis [17], 
in a consideration of bond percolation, introduced a duality construction which is 
identical to the one given by Melrose [13] for plane fractal and hierarchical lattices. 
This m = 2 duality construction has proven to be very useful in real-space renormalisa- 
tion group Considerations [3,7,10,11,18-221. For m = 3, specific examples of three- 
rooted dual graphs have been previously given [3,8,9,13], although, to our knowledge, 
explicit rules for the geometric duality construction have not been presented. Here, 
we extend duality constructions to m-rooted plane graphs for general m, and obtain 
the duality relation for multispin correlation functions of the Potts model (for a review 
on the Potts model see Wu [23]). Our results are presented in terms of edge variables 
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(thermal transmissivities [3]), and of partitioned equivalent transmissivities [4,24] 
which are ratios of certain percolation averages. 

The organisation of this paper is as follows. In section 2 we introduce the Potts 
model and its multispin correlation functions as well as the dual of a rooted plane 
graph. In section 3 we review the derivation of the duality relation for the Potts 
partition function using the formulation of a percolation average. It is subsequently 
shown in section 4 that this formulation can be straightforwardly extended to obtaining 
the duality for the partitioned equivalent transmissivity. The duality relation for 
multispin correlation functions is discussed, and explicitly derived, in some special 
cases in section 5 .  It is shown that, in the most general case, the duality relates a 
correlation function to the partitioned equivalent transmissivities in the dual space, 
and it is not always possible to express the final result solely in terms of the dual 
correlation functions. Finally, in section 6, some graph-theoretic meaning is given to 
an overall multiplication factor arising in our considerations. 

2. Definitions 

Consider a standard Potts model on a plane connected graph G with vertex set V of 
N sites, and edge set 8 of E edges. The spin at the ith site can take on q distinct 
values ai = 1 , 2 , .  . . , q, and the Hamiltonian is 

where the summation extends to all edges in 8. Here, we have explicitly assumed the 
same interaction K along all edges, but our results can be extended to include 
edge-dependent interactions. 

It is convenient to regard the spin ai as being represented by a unit vector fi pointing 
in one of the q-symmetric directions of a hypertetrahedron in q - 1 dimensions. Then 
the m-spin correlation function for spins at sites 1 , 2 , .  . . , m is defined to bet 

where 

Z (  G )  = Tr exp( -@Y) (3) 
is the partition function of the Potts model ( l ) ,  si, = S:..&, and go is a unit vector 
pointing in the symmetric direction a of the hypertetrahedron. 

Equation (2) may be generalised to define a partitioned m-spin correlation 
function [4] 

for which the m spins are partitioned into b blocks according to the partition P ( m )  
of the m integers 1 ,2 , .  . . , m, such that the a indices in (2), instead of being all the 
same, are the same for all spins within a block and distinct for spins in different blocks. 
The duality relation for the partition function Z( G )  is well known (see, e.g., Wu [23]); 
here we consider duality relations for the correlation function rp(,)( G). 

t Note that a factor ( q - 1)"* has been introduced in (2)  so as to make the definition of the correlation 
functions to agree with that of de Magalhies and Essam [4]. 
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The special vertices 1 , 2 , .  . . , m, which are distinct from other vertices, constitute 
the roots of the graph G. In order to properly describe the duality relation for the 
correlation functions we consider the case that G is connected, and has no single-edge 
loops or unrooted vertices of degree one. (These are not stringent restrictions, since 
loops and unrooted vertices of degree one have no effect on the correlation functions). 
We shall also suppose that the articulation points of G are unrooted, since the 
correlation function for a graph with a rooted articulation point can be factored. We 
also suppose that, as shown in figure 1 ,  all m roots can be placed on the boundary of 
G bordering the injnire (exterior) face. We shall picture that the rooted graph has m 
(imaginary) infinite faces defined by introducing m (imaginary) non-intersecting boun- 
dary lines running from each root out to infinity. We define the graph D dual to G 
to be another m-rooted graph with 

(i)  the m roots of D each residing in one of the m infinite faces of G, 
(ii) one unrooted vertex of D residing in each of the c(G)= E - N + 1  finite 

(interior) faces of G, and 

2 

P 

Figure 1. A 3-rooted graph G (full lines) and its dual D (broken lines). The roots are 
denoted by open circles and open squares. 

(iii) E edges each crossing one edge of G and joining the vertices which lie in the 

An example of G and its dual D is shown in figure 1. Clearly, the dual graph D 
faces adjoining the edge. 

generally has 

N* = c ( G ) + m  = E - N +  m +  1 (4) 
vertices, where c(G) is the number of independent circuits in G. The infinite face of 
D can also be pictured as being partitioned into m infinite faces by m (imaginary) 
non-intersecting boundaries running from each root to infinity. The dual of D is 
clearly G. 

3. Duality for the partition function 

It is known that the thermodynamic properties of the Potts model may be expressed 
in terms of percolation averages [24,25]. 
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Consider the percolation average defined by 

( X ) , , =  X(G') tE'G''( l  - t ) E - E ' G ' )  
G ' c  G 

where the summation is extended over all partial graphs, GIG G, X (  G')  is any property 
of the partial graph G', and E(G') is the number of edges in G'. It is readily verified 
(Essam and Tsallis [24]) that the Potts partition function can be written as 

where t is the thermal transmissivity defined by 

In our discussion of duality for the m-spin correlation functions in the next section 
it will be necessary to consider a percolation average which reduces to ( s ' ) ~ , ,  when 
m = 1. It is therefore instructive to rederive the usual duality relation for the partition 
function by considering this quantity first. When m = 1 our definition of the dual graph 
D coincides with the standard definition [2] of the dual for an unrooted graph in 
which only one vertex is placed in the infinite face. Introducing the Euler relation 

(8) E (  G')  = N +  C( G')  - n( G')  

where n(G') is the number of components, including isolated sites, in G', we can 
rewrite the percolation average appearing in (6) as 

The derivation of the duality relation for (qC)G, , ,  or the partition function, is a 
consequence of the existence of a bijection (one-one correspondence) between partial 
graphs G'E G and partial graphs D'E D :  for each edge of D present in D', the 
crossing edge of G is absent in G' and vice versa. This leads to the following 
proposition. 

Proposition 1 .  (General m ) .  If D' is the partial graph corresponding to G', then 
( a )  vertices of G' in different faces of D' are not connected; 
( 6 )  vertices of G' in the same face of D' are connected; 
(c)  the results ( a )  and ( b )  are true with G and D interchanged. 

A proof for m = 1 may be found in Essam [26,27] and the extension to general m is 
discussed in section 4. Proposition 2 follows immediately. 

Proposition 2. Each face of D' (finite or infinite) contains exactly one component of 
G' and vice versa. Consequently, there exists the identity (for m = 1) 

n ( G ' ) = c ( D ' ) + l  (100) 
and on interchanging G and D, 

C( G') = n( D')  - 1. ( l o b )  
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It follows from the existence of the bijection that we may regard the summation in 
(9) as being taken over D' c D and from (10) that the roles of the two quantities inside 
the square brackets in (9) are interchanged in the dual graph. 

Introducing the dual variable 

1 - t  t* e - K  = 
1 +(  q - 1 ) t  

or, equivalently, 
1 - t *  qt qt* 1- t  

1-t* t t* 1 - r  
- - 

we obtain after substituting (loa, b )  and (12) into (9) as well as introducing (9) for 0, 

Here, we have used the identity E = N + N* - 2, namely (4) with m = 1,  in writing 
down the second line in (13). The expression (13) gives the duality relation for the 
percolation average (9). For the convenience of later use, we note the further identities 
between t and t * :  

The duality relation (13), which is valid for m = 1, can also be interpreted as being 
valid for general m in terms of a collapsed graph. Starting from 0, we construct a 

'I \ \ 

\ I 
I 
I \ 

I 
/ I 

I 

I 

/ 

1 I 
I 

I 
I 

I 

Figure 2. The 3-collapsed graph D'" constructed from the 3-rooted graph D in figure 1 ,  
by moving two of the three roots (open squares) of D and superimposing them onto the 
third root so that D"' is the conventional dual of G. 
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"-collapsed' graph D"' by moving and superimposing all m roots of D into a single 
root (which resides in the infinite face of G) such that G has a single root in the 
infinite face of D'". An example of the construction of the 3-collapsed graph D(') 
starting from the graph D in figure 1 is shown in figure 2. Since in the conventional 
dual graph there is always one site of D residing in the infinite face of G, clearly D(" 
is precisely the conventional dual. We can therefore rewrite (13) as 

(qC)G, t  = q l - N [ l  +( 4 -  l)t]"( qC)D") , t*  (15a) 

and, similarly if instead we collapse G to give G"', 

Here, it is to be noted that the right-hand side of (15a, b )  pertain to general m. In 
addition, as a consequence of (15a, b) and the use of (14) and (4), these percolation 
averages satisfy the identity 

( qC)G, t (  qc)D.t* = q'-"(  qC)G(C),t(  q C ) D ' c ' , t * .  (16) 

4. Duality relation for the partitioned equivalent transmissivity 

It is known [4] that the m-site correlation function of the Potts model is expressible 
as a linear combination of the partitioned equivalent transmissivity 

where P =  P ( m )  is a partition of the m roots of G into b blocks. For example, one 
possible partition for m = 6 is P =  {1,3}, {2,5,6},  (4) for b = 3. In (17),  

1 if roots in the same block of the partition P are 
connected among themselves in G' and if 
roots of different blocks are not connected Y p ( G ' ) =  i 0 otherwise. (18) 

If yp(  G') = 1, we say that P is the partition of the roots induced by G'. For example, 
in figure 3, the partial graph G' of a rectangular section G of the square lattice induces 
the partition P =  (1, l l } ,  {2,9, lo}, {3,5,8}, {4}, {6}, (7). As a first step of deriving the 
duality relation for the correlation function, we obtain in this section the duality for 
the equivalent transmissivity (17).  

We have already seen that the denominator of (17)  satisfies the duality relation 
(15a) .  It therefore remains only to consider the duality for the numerator in (17).  To 
accomplish this, we proceed as in (9) by writing 

( qCyp)c,, = y p (  G')q"c')tE(G''( 1 - t )"E 'G' )  
G'E G 

Further progress requires that we relate yp( G'), c( G'), and n( G') to corresponding 
quantities for D'. This may be achieved by noticing, first, that proposition 1 continues 
to be valid for any m-rooted graph G ' c  G. The dividing boundaries introduced in 
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11’ I ’  2 ’  3 ’  

9’ 8’ 1’ 6 ’  

Figure 3. A m = 11 rooted partial graph G’ (full lines) of a rectangular lattice G and the 
corresponding partial graph D’ (broken lines) of D. Vertices of G are denoted by circles 
and vertices of D by squares, with open circles and squares denoting rooted sites. 

defining the infinite faces of the rooted graph G are maintained but different infinite 
faces can become connected in G’ via union with finite faces of G. One may convince 
oneself of the truth of proposition 1 by inspection of figure 3 which shows a partial 
graph G‘ of G together with the corresponding partial graph D’ of D for m = 11. 

Proposition 3. Let G’, and G; be partial graphs of G, and let D’, and D ;  be the 
corresponding partial graphs of D. If G’, and G; induce the same partition of the 
roots of G, then D’, and D ;  induce the same partition of the roots of D. 

ProoJ: Number the m roots 1 ,2 , .  . . , m of G in ascending order around the boundary 
except that m is followed by 1, and number the m roots l’, 2‘, . . . , m‘ of D in relation 
to those of G such that i ’  resides between roots i and i S  1, except that m’ is between 
m and 1. If i’ and j ’  are connected in D i ,  then from proposition 1 there is no path 
on G’, between the root sets R I  = { i + l , .  . . , j }  and R 2 = { j + 1 , .  . . , i }  of G, since these 
sets lie in different faces of 0; .  Since GI and G; induce the same partition of the 
roots of G, there is no path on G; between R,  and R 2 ,  and by proposition 1 there 
must therefore be a path between i’ and j ‘  on 0;. Conversely, if i’ and j ’  are not 
connected in D ; ,  then there is at least one path between R I  and R2 on GI and hence 
on G;. Consequently, there is no path between i‘ and j ’  on D i .  

It follows from proposition 3 that we may define a bijection between the root 
partitions of G and D by saying that if G’ induces the partition P and D’ corresponds 
to G’, then the corresponding partition Q is the one induced by D’. Clearly, any G’ 
which induces P will suffice to find Q, and the simplest one is to take a forest. That 
is, for any partition P of the m sites of G, we connect those rooted vertices belonging 
to a given block in P by lines. As an example, we show in figure 3 an m = 11 partial 
graph, and in figure 4 the associated forest construction. The solid lines in the forest 
construction now divide the lattice into regions. Then, the partition Q is one in which 
all rooted vertices i’ residing in one region of the lattice are associated to one block 
of Q. The forest construction of Q is shown in figure 4 by broken lines. 
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11' 1 2 3' L 

Figure 4. The partitions P = { l ,  l l} ,  {2,9, lo}, {3,5,8}, {4}, { 6 } ,  {7}, Q = { l ' ,  IO'}, {2',8'}, 
{3', 4'}, { 5 ' ,  6', 7'}, {9'} ,  {ll '}, and the associated forests corresponding to the partial graphs 
G' and D' in figure 3. Rooted vertices belonging to one block in P and Q are connected 
by, respectively, full and broken lines. 

It is clear that the correspondence between P and Q is a bijection. If P and Q 
are corresponding partitions, then clearly 

YQ(D') = Y d G ' ) .  (20) 

b+b* = m +  1 (21) 

Further, we note that if P has b blocks and Q has b* blocks, then 

which follows from the facts that b + b* is invariant under addition or deletion of an 
edge from G', and, when b = 1 ,  the roots of G' are all connected and by proposition 
1 there is no connection between the roots of D' so that b* = m. The above invariance 
is also a consequence of proposition 1, since if deleting an edge from G' increases the 
number of blocks in P by one, then addition of the corresponding edge to D' must 
introduce a path between different blocks of Q, and hence b* is reduced by 1. 

To relate n( G') to c( D'),  (loa) must be extended using a generalisation of proposi- 
tion 2, which again follows from proposition 1, namely: 

Proposition 4. Each face (finite or infinite) of D' contains exactly one component of 
G', and there is an infinite face of D' corresponding to each block of P. 

Instead of (loa), we now have, for general m, 
n ( G')  = c( D')  + b 

and, interchanging G and D, 
c(G')= n ( D ' ) -  b*. 

Proceeding exactly as in the derivation of (13), we substitute (22a, b )  and (20)  into 
(19), write the summation in (19) as being taken over D' E D, and use ( 2 1 )  to eliminate 
b*. This leads to 
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which is the generalisation of ( 1 3 )  to arbitrary m. Here, use has been made of (4) and 
(14) in writing down the last step in (23). Note that (23) reduces to (13) for m = 1 
after setting b = 1. 

The duality relation for the partitioned equivalent transmissivity t'pq( t ,  G )  can now 
be written down by substituting (15a) and (23) for, respectively, the denominator and 
the numerator of ( 1 7 ) .  This leads to the relation? 

If we define 

which, according to (16), satisfies the duality relation 

A( t ,  G ) A (  t * ,  D )  = q m - '  

we can rewrite (24) as 

t'pq( t,  G )  = qb-"A( t, G)t'ag( t * ,  D ) .  

This is the desired duality relation for the partitioned equivalent transmissivity. Here, 
m is the number of roots, b is the number of blocks in P, and t and t* eCK are 
related by (7), ( l l ) ,  or (14). Note that a common multiplication factor A( t, G ) ,  which 
is independent of the partition P ( m ) ,  arises in the above formulation. We shall in 
section 6 elucidate the graphical meaning associated to this multiplication factor. 

5. Duality for the correlation function 

In this section we consider the duality relation for the correlation functions Tpcm,( G ) .  
To be more precise, we shall derive duality relations which relate the spin correlation 
functions to the partitioned equivalent transmissivities in the dual space. We shall see 
that, in some cases, these equivalent transmissivities can be expressed in terms of spin 
correlation functions of the dual space. 

Consider first the case of m = 2, for which there exist two partitioned correlation 
functions corresponding to the partitions (12) and {1,2} of the integers 1,2.  It has 
been established [4] that these correlation functions are related to the equivalent 
transmissivity t;$ as follows: 

Now using ( 2 7 )  and the following identity which holds for either G or D, 

t;;  + t;F2 = 1 

T d G )  = q- 'A(c  G ) [ 1  - r , A D ) I  

Tl,2(G) = -q- 'A(t ,  G ) [ ( q -  l ) - '+r l , 2 (D) l .  

(29) 
we obtain, after using (28) for D, 

(30) 

+ The relation (24) can also be derived by using (17)  and (3.20) of de Magalhies and Essam [4]. 
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Here, for simplicity, TI2(D) for D denotes I'l.2,(D), etc. These are the desired duality 
relations relating correlation functions to their duals. 

Note that the numerator of A(t ,  G)  satisfies the following relation 

( qC)G"',r = ( q C ) c . ,  + ( q - 1 ) (  q C Y I * ) c , r  (31) 

where we have applied the 'onion property' (see equation (4.17) of Essam and Tsallis 
[24]) to the original graph G(') and the 'peeled' graph G. 

Combining the above relation with (17)  and (25), we get 

A(r, G) = 1 + ( q  - l)t;;( t ,  G )  (32) 

which, together with (28) and (30), leads to Tsallis and Levy's result [3], namely, 

tP:(D) = [ 1 - t i ; (  G)][ 1 + ( q - l)t;;( G)]-' .  (33) 

For m = 3, there are five independent partitioned correlation functions correspond- 
ing to the partitions {123}, { I ,  23}, {2,31}, {3,12}, { l ,  2 ,3}  of the integers 1 ,2 ,3 .  It has 
been shown [4] that these correlation functions are all related to the equivalent 
transmissivity t;z3 : 

r 1 2 3 ( ~ )  = ( 4 -2)( 4 - 1)-l'2t;?3(t, G) 

rl.23(G) = r 2 , 3 1 ( G ) = r 3 , 1 2 ( G )  G) (34) 

r l ,2 ,3 (G)  = 2( 4 - 1)-3'2r;;3(f, 

Introducing (27) and the identity 

t;;f3+ t 3 3 +  t;;3l + t ; P l 2 +  t;P2,3 = 1 

and using (34) for D, we obtain after some steps the expression 

(35) 

This is the duality relation. However, we note that the right-hand side of (36) contains 
terms of equivalent transmissivities whose partitions Q contain blocks of single sites. 
As we shall see below, these dual transmissivities in general cannot be expressed in 
terms of the dual correlation functions. 

For general m the partitioned correlation function rp( , ) (G) can be expressedt as 
a linear combination of the transmissivities t2( t ,  G) which, in conjunction with (27), 
expresses rp( , ) (G) in terms of t T ( t * ,  D). Similarly, we can express Tocm,(D) as a 
linear combination of t'Q"( t*,  D )  and use these expressions to solve for t3((t*, D )  in 
terms of Tocm,(D). However, it turns out that equivalent transmissivities t'og(t*, D )  
whose partition Q(m) contains one or more blocks consisting of a single site never 
appear in this formulationS. As a result, we cannot obtain expressions for these t'Q4, 
and, consequently, they remain in the resulting duality relation. 

t See equation ( 3 . 1 4 ~ )  and (3.44) of de Magalhies and Essam [4]. 
$This is a consequence of the fact that the coefficient of r3 occurring in (3.44) of de Magalhies and Essam 
[4] is the flow polynomial f( 9, I , , ) ,  which vanishes identically for Q containing blocks of single sites. 
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The duality relation for other partitioned correlation functions can be worked out 
on a case by case basis. For example, for m = 4 we find 

Here, use has been made of the fact that, as a consequence of G being planar, some 
of the equivalent transmissivities such as t;2,24 vanishes identically. 

6. Expression for A( t ,  C) in terms of generating functions for flow polynomials 

In the preceeding sections we have seen that a common factor A(t, G),  which is 
independent of the partition P ( m ) ,  arises in the duality relation for r P ( m ) ( G ) .  It is 
therefore useful to examine the graphical interpretation of this function. 

The function A(?, G) is defined by (25). Following Wu [28] we introduce 

1 4 - 1  f = 8 . --E - f, . f, 
'J I f 4  9 

so that the Boltzmann factor occurring in (2) and (3) can be written as 

e-m = ( 1 - t Y  n (1+4tJf) .  
e e G  

It then follows from (6) and (39) that the denominator of (25) is 

( q c ) G . r = q - N  Tr n (l+qgf)* 
e s G  

(39) 

Now, the flow polynomial [24] for any graph g having N ( g )  sites can be written as 
~ 8 , 2 9 1  

Therefore, by affecting a partial graph expansion of the product in (40), we obtain 

This relation which expresses the percolation average in terms of the flow polynomial 
was first obtained by Essam and Tsallis [24]. 

We now proceed in exactly the same fashion to write the numerator of ( 2 5 )  as a 
percolation average. Now, the m-collapsed graph G(') is obtained from G by moving 
and overlapping the m roots into a single point. Since this procedure reduces the 
number of sites by m - 1 while leaving the number of edges unchanged, we have from 
(6) 

(1 - t ) € Z (  q, G")).  (43 1 
We can achieve the same effect of collapsing G by not physically moving the roots, 

but instead requiring the m roots to be in the same spin state. This can be done 
formally by introducing a ghost spin go and rewriting in (43) 

(44) 

m - N - 1  
( qC)G"' , r  = 4 

Z (  q, G"') = Tr'[ 601802. . . tj0,,, e-'"] 
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where the trace Tr+ is taken over a. as well as the N spins in G and 

S O i  = S ~ r ( a 0 ,  ai), 

Now, substituting (39), (44) into (43) and introducing SOi = q-'(  1 + qfoi) ,  we obtain 

It is then convenient to introduce the graphs 

G + = G u g  

g = g , u g z u  ugm 

where g, is an edge connecting the ith root to the spin a,. Expanding the products 
in (45) and introducing (41) for the flow polynomial, we obtain from (45) 

Combining (42) and (47), we finally obtain from (25) the following expression for 
A(f, G):  

7. Summary 

We have considered the duality relation for the multispin correlation functions of the 
standard Potts model. Useful graph-theoretic terms are introduced in section 2, and 
in section 3 we derive the duality relation of the partition function, which is also the 
one-site correlation function, using the formulation of a percolation average. This 
derivation is generalised in section 4 to obtain (27), the duality relation for the 
partitioned equivalent transmissivity. In section 5 ,  we establish that duality relations 
for correlation functions can be related to those of the partitioned equivalent trans- 
missivity. Finally, in section 6, we elucidate the graph-theoretic meaning of a factor 
arising in these considerations. 
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